Limits to hydropower expansion in the Himalayas

Posted on Updated on

The Upper Trishuli 3A hydropower project following the Gorkha Earthquake in 2015. Red lines are mapped coseismic landslides.

The 2015 Gorkha earthquake in Nepal caused severe losses in the hydropower sector. The country temporarily lost ~20% of its hydropower capacity, and >30 hydropower projects were damaged. In our paper that was just published in Geophysical Research Letters, we show that the projects hit hardest were those that were affected by earthquake‐triggered landslides. These projects are located along very steep rivers with towering sidewalls that are prone to become unstable during strong seismic ground shaking. A statistical classification based on a topographic metric that expresses river steepness and earthquake ground acceleration is able to approximately predict hydropower damage during future earthquakes, based on successful testing of past cases. Thus, our model enables us to estimate earthquake damages to hydropower projects in other parts of the Himalayas. We find that >10% of the Himalayan drainage network may be unsuitable for hydropower infrastructure given high probabilities of high earthquake damages.

Of course, we conducted the analysis primarily using TopoToolbox. A few functions that we used and partly developed for the purpose of our analysis are

  • STREAMobj/chitransform
  • STREAMobj/mchi
  • STREAMobj/smooth
  • STREAMobj/hillslopearea


Schwanghart, W., Ryan, M., Korup, O., 2018. Topographic and seismic constraints on the vulnerability of Himalayan hydropower. Geophysical Research Letters, in press. [DOI: 10.1029/2018GL079173]

see also Nature News article by Jane Qiu, 2018. Landslides pose threat to Himalayan hydropower dream. [DOI: 10.1038/d41586-018-06212-8]


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.